(x^2+5x)+(11x+27)=180

Simple and best practice solution for (x^2+5x)+(11x+27)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+5x)+(11x+27)=180 equation:



(x^2+5x)+(11x+27)=180
We move all terms to the left:
(x^2+5x)+(11x+27)-(180)=0
We get rid of parentheses
x^2+5x+11x+27-180=0
We add all the numbers together, and all the variables
x^2+16x-153=0
a = 1; b = 16; c = -153;
Δ = b2-4ac
Δ = 162-4·1·(-153)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{217}}{2*1}=\frac{-16-2\sqrt{217}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{217}}{2*1}=\frac{-16+2\sqrt{217}}{2} $

See similar equations:

| 23=2x-8/5+3 | | 8x+11=x-2 | | 7h=5+6h | | -4+9=3x-5 | | 1/42-2/3x=3/4-1/3x | | -8=32-6q | | 19x+1+15x+13=90 | | a+1=16 | | 4000=1000^(4t) | | 7x+2(x-8)=16 | | -6k=-2k+8 | | 7=91/v= | | 12p-5p-p+p=7 | | 19x+1+15x+13=180 | | -2c=-4c+10 | | 2(3w–4)+5(2w+3)=-9 | | 9^x-6.3^x=27 | | m/3-11=-19 | | (7t-2)(3t+-1)=3(1-3t) | | x+0.7x=1000 | | x^2-133x=0 | | 3-3/4x=1/4-7 | | 3c+4c-4c=9 | | .9=-1.8x | | 9v-6=12/4-72/4v | | 4+9=3x-5 | | -18+43=-5(x+8) | | 2x+12/6=6 | | -10w=10 | | -18+43=-5(x+8 | | 3/8n+16=1/8n | | 1.5x-0.2=2.8 |

Equations solver categories